3,802 research outputs found

    High-Resolution Simulations of Cosmic Microwave Background non-Gaussian Maps in Spherical Coordinates

    Full text link
    We describe a new numerical algorithm to obtain high-resolution simulated maps of the Cosmic Microwave Background (CMB), for a broad class of non-Gaussian models. The kind of non-Gaussianity we account for is based on the simple idea that the primordial gravitational potential is obtained by a non-linear but local mapping from an underlying Gaussian random field, as resulting from a variety of inflationary models. Our technique, which is based on a direct realization of the potential in spherical coordinates and fully accounts for the radiation transfer function, allows to simulate non-Gaussian CMB maps down to the Planck resolution (ℓmax∼3,000\ell_{\rm max} \sim 3,000), with reasonable memory storage and computational time.Comment: 9 pages, 5 figures. Submitted to ApJ. A version with higher quality figures is available at http://www.pd.infn.it/~liguori/content.htm

    Primordial non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure

    Get PDF
    The most direct probe of non-Gaussian initial conditions has come from bispectrum measurements of temperature fluctuations in the Cosmic Microwave Background and of the matter and galaxy distribution at large scales. Such bispectrum estimators are expected to continue to provide the best constraints on the non-Gaussian parameters in future observations. We review and compare the theoretical and observational problems, current results and future prospects for the detection of a non-vanishing primordial component in the bispectrum of the Cosmic Microwave Background and large-scale structure, and the relation to specific predictions from different inflationary models.Comment: 82 pages, 23 figures; Invited Review for the special issue "Testing the Gaussianity and Statistical Isotropy of the Universe" for Advances in Astronom

    General CMB and Primordial Bispectrum Estimation I: Mode Expansion, Map-Making and Measures of f_NL

    Full text link
    We present a detailed implementation of two bispectrum estimation methods which can be applied to general non-separable primordial and CMB bispectra. The method exploits bispectrum mode decompositions on the domain of allowed wavenumber or multipole values. Concrete mode examples constructed from symmetrised tetrahedral polynomials are given, demonstrating rapid convergence for known bispectra. We use these modes to generate simulated CMB maps of high resolution (l > 2000) given an arbitrary primordial power spectrum and bispectrum or an arbitrary late-time CMB angular power spectrum and bispectrum. By extracting coefficients for the same separable basis functions from an observational map, we are able to present an efficient and general f_NL estimator for a given theoretical model. The estimator has two versions comparing theoretical and observed coefficients at either primordial or late times, thus encompassing a wider range of models, including secondary anisotropies, lensing and cosmic strings. We provide examples and validation of both f_NL estimation methods by direct comparison with simulations in a WMAP-realistic context. In addition, we show how the full bispectrum can be extracted from observational maps using these mode expansions, irrespective of the theoretical model under study. We also propose a universal definition of the bispectrum parameter F_NL for more consistent comparison between theoretical models. We obtain WMAP5 estimates of f_NL for the equilateral model from both our primordial and late-time estimators which are consistent with each other, as well as with results already published in the literature. These general bispectrum estimation methods should prove useful for the analysis of nonGaussianity in the Planck satellite data, as well as in other contexts.Comment: 41 pages, 17 figure

    Calculating the local-type fNL for slow-roll inflation with a non-vacuum initial state

    Full text link
    Single-field slow-roll inflation with a non-vacuum initial state has an enhanced bispectrum in the local limit. We numerically calculate the local-type fNL signal in the CMB that would be measured for such models (including the full transfer function and 2D projection). The nature of the result depends on several parameters, including the occupation number N_k, the phase angle \theta_k between the Bogoliubov parameters, and the slow-roll parameter \epsilon. In the most conservative case, where one takes \theta_k \approx \eta_0 k (justified by physical reasons discussed within) and \epsilon\lesssim 0.01, we find that 0 < fNL < 1.52 (\epsilon/0.01), which is likely too small to be detected in the CMB. However, if one is willing to allow a constant value for the phase angle \theta_k and N_k=O(1), fNL can be much larger and/or negative (depending on the choice of \theta_k), e.g. fNL \approx 28 (\epsilon/0.01) or -6.4 (\epsilon/0.01); depending on \epsilon, these scenarios could be detected by Planck or a future satellite. While we show that these results are not actually a violation of the single-field consistency relation, they do produce a value for fNL that is considerably larger than that usually predicted from single-field inflation.Comment: 8 pages, 1 figure. v2: Version accepted for publication in PRD. Added greatly expanded discussion of the phase angle \theta_k; this allows the possibility of enhanced fNL, as mentioned in abstract. More explicit comparisons with earlier wor

    Factorization in integrable systems with impurity

    Full text link
    This article is based on recent works done in collaboration with M. Mintchev, E. Ragoucy and P. Sorba. It aims at presenting the latest developments in the subject of factorization for integrable field theories with a reflecting and transmitting impurity.Comment: 7 pages; contribution to the XIVth International Colloquium on Integrable systems, Prague, June 200

    Non Gaussian extrema counts for CMB maps

    Full text link
    In the context of the geometrical analysis of weakly non Gaussian CMB maps, the 2D differential extrema counts as functions of the excursion set threshold is derived from the full moments expansion of the joint probability distribution of an isotropic random field, its gradient and invariants of the Hessian. Analytic expressions for these counts are given to second order in the non Gaussian correction, while a Monte Carlo method to compute them to arbitrary order is presented. Matching count statistics to these estimators is illustrated on fiducial non-Gaussian "Planck" data.Comment: 4 pages, 1 figur
    • …
    corecore